Configuration Declaration

- It is used to select one of the possibly many architecture bodies.
- Used to bind components.
- Used to represent structure in that architecture body.

Example of Configuration Declaration

 Consider the following configuration declaration for the HALF_ADDER entity.

library CMOS_LIB, MY_LIB; configuration HA_BINDING of HALF_ADDER is for HA-STRUCTURE for X1:XOR2

Example of Configuration Declaration cont..

```
use entity CMOS_LIB.XOR_GATE(DATAFLOW);
end for;
for A1:AND2
 use configuration MY_LIB.AND_CONFIG;
 end for;
end for;
end HA_BINDING;
```

Package Declaration

 A package declaration is used to store a set of common declarations like components, types, procedures, and functions.

 These declarations can then be imported into other design units using a use clause.

Example of Package Declaration

package EXAMPLE_PACK is type SUMMER is (MAY, JUN, JUL, AUG, SEP);

component D_FLIP_FLOP port (D, CK: in BIT; Q, QBAR: out BIT); end component;

constant PIN2PIN_DELAY: TIME := 125 ns;

function INT2BIT_VEC (INT_VALUE: INTEGER) return BIT_VECTOR;

and EVANIDLE DACK.

Package Declaration cont...

 Assume that this package has been compiled into a design library called DESIGN_LIB. Consider the following clauses associated with an entity declaration.

library DESIGN_LIB; use DESIGN_LIB.EXAMPLE_PACK.all; entity RX is . . .

Package Declaration cont...

 It is also possible to selectively import declarations from a package declaration into other design units. For example:

library DESIGN_LIB; use DES[GN_LIB.EXAMPLE_PACK.D_FLIP_FLOP; use DESIGN_LIB.EXAMPLE_PACK.PIN2PIN_DELAY; architecture RX_STRUCTURE of RX is . . .

Package Body

- A package body is primarily used to store the definitions of functions and procedures that were declared in the corresponding package declaration.
- Used to do constant declarations for any deferred constants that appear in the package declaration.

Package Body Cont...

- A package body is always associated with a package declaration.
- A package declaration can have at most one package body associated with it.
- Contrast this with an architecture body and an entity declaration where multiple architecture bodies may be associated with a single entity

dodorotion

Example of Package Body

 Here is the package body for the package EXAMPLE_PACK declared.

```
package body EXAMPLE_PACK is function INT2BIT_VEC (INT_VALUE: INTEGER) return BIT_VECTOR is begin --Behavior of function described here. end INT2BIT_VEC; end EXAMPLE_PACK;
```

Model Analysis

- Once an entity is described in VHDL, it can be validated using an analyzer and a simulator that are part of a VHDL system.
- The analyzer takes a file that contains one or more design units and compiles them into an intermediate form.
- During compilation, the analyzer validates the syntax and performs static semantic checks

Model Analysis cont..

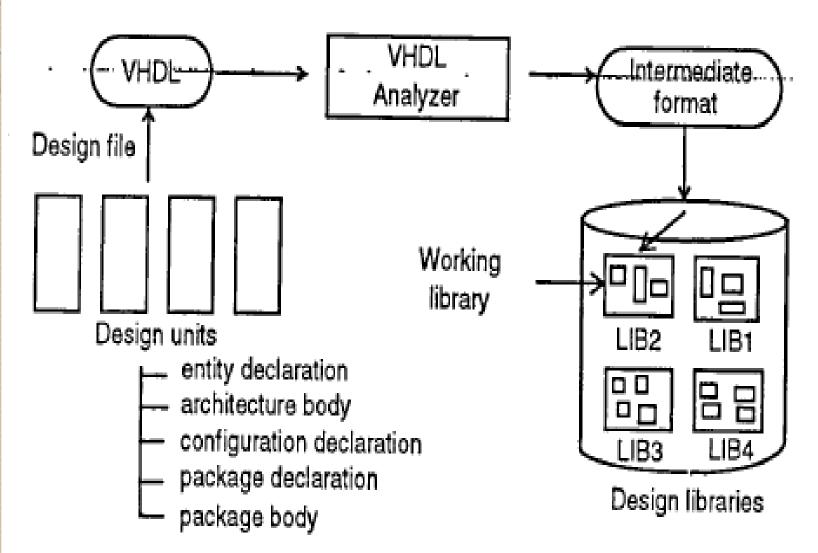


Figure 2.8 The compilation process.

Model Analysis cont..

- The generated intermediate form is stored in a specific design library, that has been designated as the working library.
- A design library is a location in the host environment (the environment that supports the VHDL system) where compiled descriptions are stored.

Simulation

 Once the model description is successfully compiled into one or more design libraries, the next step in the validation process is simulation.

- A simulation can be performed on either one of the following:
- an entity declaration and an architecture body pair,
- a configuration.

Simulation cont...

Actual simulation consists two major steps:

- 1. Elaboration phase
- 2. Initialization phase

Simulation cont...

1. Elaboration phase: In this phase, the hierarchy of the entity is expanded and linked, components are bound to entities in a library .Also storage is allocated for all data objects (signals, variables, and constants) declared in the design units. Initial values are also assigned to these objects.

Simulation cont...

2. Initialization phase: The effective values for all explicitly declared signals are computed, are assigned values, processes are executed once until they suspend, and simulation time is reset to 0 ns.